Structures of two crystal forms of poly(ethylene oxide)-sodium thiocyanate complex with molar ratios of 3:1 and 1:1

Yozo Chatani*, Yasuhiro Fujii, Tetsuya Takayanagi and Atsuya Honma

Department of Material Systems Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan (Received 28 October 1989; accepted 18 November 1989)

The poly(ethylene oxide) (PEO)-sodium thiocyanate system was found to exhibit polymorphism; there exist at least three crystal modifications. Among them, the crystal structures of two kinds of PEO-NaSCN complex with molar ratios (EO:NaSCN) of 3:1 (form I) and 1:1 (form II), respectively, were determined by X-ray diffraction. Crystal data are as follows: form I, monoclinic $P2_1/a$, a = 16.83, b = 10.64, c(chain axis)=7.19 Å[†], γ =125.5° (*c*-unique), N=12 EO units (2 chains) and 4 NaSCN ions; form II, monoclinic P2₁/*c*, *a*=7.55, *b*=12.10, *c*(chain axis)=5.83 Å, β =97.5° (*b*-unique), N=4 EO units (2 chains) and 4 NaSCN ions. Form I has a crystal structure resembling that of the PEO-NaI complex. The polymer chains have a twofold helical structure of $(-t_2gt_2gt_{-}\bar{g}_{-})_2$ conformation, the chain repeat comprising six EO units. The helical polymer chain coils around an array of Na ions and each Na ion is coordinated by four polymer O atoms and two N of the SCN ions (the coordination number is six). In form II, which exists only under high tension, the polymer chains have a glide structure of $(-tg_2t\bar{g}_2-)$ conformation, the chain repeat comprising two EO units. Since the PEO chain in form II takes a rather stretched conformation, the Na ions are not wrapped by the polymer chain. The coordination number is again six, but each Na ion is coordinated by two polymer O atoms, two N and two S of the SCN ions. Form II is transformed into form I when the tension is released.

(Keywords: poly(ethylene oxide); sodium thiocyanate; poly(ethylene oxide)-sodium thiocyanate complex; polymorphism; crystal structure; X-ray diffraction)

INTRODUCTION

Much literature has appeared on complex formation of poly(ethylene oxide) (PEO) with organic and inorganic compounds in solutions or solids. In particular, crystalline or amorphous PEO complexes with alkali metal salts, first found by Wright¹, have been paid a great deal of attention as solid electrolytes or high ionic conductors $^{2-4}$.

In a previous paper⁵, the crystal structure of the PEO-NaI complex was revealed. The crystal structure is characterized by a NaI zigzag chain coiled round by a helical PEO chain having $(-t_2gt_2gt_2\bar{g}-)_2$ conformation, the chain repeat comprising six EO units. Hibma⁶ reported crystal data for the PEO-NaSCN complex, i.e. cell constants, space group and molar ratio (EO:NaSCN). In our laboratory, however, the PEO-NaSCN system was found to exhibit polymorphism. There exist at least three crystal modifications, named forms I, II and III. Form I is explained in terms of the Hibma cell. Form II, which exists only under high tension, has an unusually short chain repeat of 5.83 Å, differing from those of other alkali metal salt complexes (7-8 Å). In this paper, the crystal structures of PEO-NaSCN complex forms I and II will be reported.

EXPERIMENTAL

Samples

In contrast to the PEO-NaI complex, in the PEO-

* To whom correspondence should be addressed $\dagger 1 \text{ Å} = 10^{-1} \text{ nm}$

0032-3861/90/122238-07

© 1990 Butterworth-Heinemann Ltd.

2238 POLYMER, 1990, Vol 31, December

NaSCN system X-ray photographs of various samples differed, indicating the existence of crystal modifications. Efforts were made to obtain samples containing only one crystal form.

Form I was obtained by casting PEO/NaSCN aqueous solutions or isopropylamine solutions with several molar ratios (EO:NaŜCN) between 1:1 and 5:1. Differential scanning calorimetric (d.s.c) measurements together with X-ray measurements made by using the same technique as for the PEO-NaI complex⁵ suggested that the molar ratio of form I is 3:1 as reported by Hibma⁶. Stretching the cast film (3:1) gave oriented form I. More highly oriented form I was obtained by immersing a highly oriented PEO filament of $\approx 0.2 \, \text{mm}$ diameter into saturated NaSCN isopropylamine solution at room temperature without tension; completion of the conversion from PEO to form I was checked by disappearance of the X-ray diffraction pattern of PEO.

Further stretching the oriented cast film of form I and then holding it under high tension gave form II. Immersion of a highly oriented PEO filament into the NaSCN solution under high tension again gave form II. However, the samples obtained by the two techniques involved other crystal modifications. Note also that form II is converted into form I when the tension is released.

Form III was obtained when form I (3:1) was once melted and then stretched, if needed.

X-ray measurements

Nickel-filtered CuKa radiation was used throughout this study. Figures 1-3 show X-ray fibre photographs of

Figure 1 X-ray fibre photograph of PEO-NaSCN complex form I

Figure 2 X-ray fibre photograph of PEO-NaSCN complex form II

Figure 3 X-ray fibre photograph of PEO-NaSCN complex form III

forms I-III, respectively. The d-spacings of the reflections were measured with a cylindrical camera of 100 mm diameter and corrected with those of NaCl powder. The reflection intensities were obtained by the multiple-film method and measured visually with a standard intensity scale. The observed intensities were corrected by the Lorentz polarization factor and the oblique effect for the layer lines.

Density measurements

The densities of the samples were determined by a flotation method using the densities of the liquid media (toluene+carbon tetrachloride) measured with a pycnometer.

STRUCTURE ANALYSIS

Form I

The X-ray fibre photograph of form I (*Figure 1*) is well explained in terms of the Hibma cell except for slight differences in cell constants. The crystal data are: monoclinic P2₁/a, a=16.83, b=10.64, c(chain axis)= 7.19 Å, $\gamma=125.5^{\circ}$ (c-unique), N=12 EO units and 4 NaSCN ions (molar ratio=3:1), observed density= 1.30 g cm⁻³ and calculated density=1.35 g cm⁻³. Form I has the same space group as the PEO-NaI complex. The molar ratio, 3:1, is also the same as that of the NaI complex. The crystal structure model was therefore obtained by trial and error with reference to the structure of the NaI complex, and the analysis was refined by the diagonal least squares method. The discrepancy factor, R, dropped to 11.6% for all the observed reflections $(R=\sum |I_o^{1/2}-I_o^{1/2}|/\sum I_o^{1/2}$, where $I=\sum mF^2$, m being the multiplicity of a reflection superimposed on one diffraction spot in the fibre photograph).

Form II

The X-ray fibre photograph of form II (Figure 2) involves diffraction patterns of other crystal forms, but form II gives layer lines at different levels from those of other crystal forms (forms I, II and III have chain repeats of 7.19, 5.83 and 7.13 Å, respectively), and the equatorial reflections from form II could be readily distinguished from those of other crystal forms. The cell constants of form II were determined as a = 7.55, b = 12.10, c(chain axis)=5.83 Å and β =97.5° (b-unique). The observed systematic absences of reflections (h0l when l is odd, 0k0 when k is odd and 00l when l is odd) indicate unequivocally that the space group is $P2_1/c$. In spite of the difficulty of density measurement on form II, the cell constants strongly suggest that there are four EO units and four NaSCN ions in the unit cell (the molar ratio is 1:1), and the number of general equivalent points for this space group, four, also supports this assumption, the calculated density being $1.57 \,\mathrm{g \, cm^{-3}}$. In addition, the observed chain repeat, 5.83 Å, is very close to that of the PEO-HgCl₂ complex form II (5.88 Å), in which the PEO chains take a glide structure of $(-tg_2 t\bar{g}_2 -)$ conformation⁷, the chain repeat comprising two EO units. The space group $P2_1/c$ enables PEO to make the chain repeat by two equivalent EO units related by the c-glide plane. Based on these assumptions, a reasonable structure model was obtained by trial and error. The structure was refined by the diagonal least squares method. The R factor dropped to 10.0% for all the observed reflections.

Fractional atomic coordinates and thermal parameters for forms I and II are listed in *Tables 1* and 2, respectively. Observed and calculated structure factors for forms I and II are listed in *Tables 3* and 4, respectively.

Table 1 Fractional atomic coordinates and thermal parameters for form ${\boldsymbol{I}}$

	x	У	Ż	B (Å ²)
Na	0.226	0.957	0.917	5.5
S	0.219	0.362	0.651	5.4
С	0.224	0.224	0.662	5.4
N	0.226	0.102	0.655	6.0
01	0.062	0.863	0.022	5.5
C1	0.057	0.922	0.200	5.5
C2	0.124	0.091	0.210	6.0
O2	0.220	0.141	0.158	5.9
C3	0.277	0.297	0.151	4.5
C4	0.377	0.346	0.127	5.7
O3	0.393	0.295	0.294	5.4
C5	0.489	0.348	0.324	5.0
C6	0.496	0.294	0.518	5.8

 Table 2
 Fractional atomic coordinates and thermal parameters for form II

	x	y	Z	B (Å ²)
Na	0.539	0.339	0.382	4.1
S	0.258	0.461	0.594	4.0
С	0.346	0.393	0.819	4.0
Ν	0.411	0.331	0.986	4.2
0	0.770	0.252	0.692	4.2
C1	0.807	0.336	0.859	4.2
C2	0.909	0.283	0.072	4.1

Table 3 Observed (F_o) and calculated (F_c) structure factors for form I

hkl	F _o	F_{c}
010	61	56
-210	58	61
200	90	98
210, 020	54	46
-410, -420	79	75
400, -430, -230	112	99
220	21	26
030	67	69
-620	61	64
410, -630	69	82
240	19	13
600	62	64
420, 040	69	60
-830, -450	61	62
-650	41	42
-820, -840	44	36
-250	22	23
610	38	53
-810	34	37
-850	39	39
240	27	29
800, 050, -460	38	47
-(10)40, -860	32	25
620, -(10)30	59	55
-(10)50, -260	27	42
810, -670	16	17
-(10)10, -870	34	22
440, 250	16	14
-(12)40, -(10)70	34	39
(10)00, -(12)30, -270	25	13
-880, - 680	29	29
-(12)70, -(10)80	24	33
450, 260, -480	23	26
(10)10, 640	26	25
(-12)10	21	14
830, -(14)50	20	25
-280, -890	21	21
-(14)30, -690	20	17
(12)00, (10)20	21	21
650, -490, 270	30	26

hkI	F _o	F _c
840 (12)10, (-16)60, -(14)90, -8(10)0, -(16)50,	18	5
-(12)(10)0, -(16)70, -(14)10	16	18
101	65	57
-211	28	23
201	37	39
111	53	57
-311	19	29
-321	78	68
301	52	49
211, 021	77	72
-411, -421 121, -331	57	50
401, -231	70	69
311, -521, -431	45	44
-511, -151	39 28	47 28
221	31	21
411, -631	52	53
-721, -731, -141	28 55	23
511, 231, -741	57	54
-711	48	44
421,041 -831, -451	33	33 26
-821, -841	24	30
331, 141, -251	30	28
-811 521 -931 -941 -151	25 50	28
431, -951, -661, -561	21	22
801, 711	53	49
-911, $-(10)31$, $-(10)41$, -861 , $-361341 151 -961 -261$	26 39	62 40
531	19	22
901, 811, $-(11)31$, $-(11)51$, -771 , -671	39	45
721, 441, 251, -871, -571 -971, -471	22 32	34
-(11)21, 631, -(11)61, 061	21	21
-(11)11, 821, 541, -(12)61, 161, -(11)71, -271	34	38
(11)01, (10)11, -(13)31, 641, 071	23	23
-(13)21, 831, -(14)61, 361	25	29
-112, 012	35	39
202	30 61	31
-222, -122	75	77
-322	83	85
302 - 412 - 422	38	46
402, 122, -332, -232	63	71
312, -522, -432	30	37
-512, -132 -532	41 63	47 62
-622	28	20
502, 412, -632	34	33
-612, -442, -342 -542	61 29	00 32
-722, -142, -732	63	64
512, 232, -742	39	39
-712 -832, -652 , -552 , -452	34 37	42
-822, -842	27	25
702, 612, 332, 142, -252 , -752	47	47
-532, -632, -132 432, $-952, -662, -562, 242$	57 41	41 39
052, -762, -462	29	25
802, 712, -862, -362, -(10)42	33	22
-(10)22, 152, -962, -262	25 33	26
532	23	17
902, 812, -(11)42, -(10)62, -162, -772, -672 -(11)22 -(11)62, 062	33 28	27 24
()==, ()==, ~~		27

 Table 3 (Continued)

hkl	Fo	F _c
912 - (12)32 - 542 - 352 - (12)62 - 162		
-(11)72, -272, -(11)12, (10)02	37	31
732(13)42(13)52(12)72172.		
-(10)82, -582, -(12)22	30	29
-313 113	18	20
-313, 113	37	41
303 213 023	29	29
-413 -423	25	23
123 _ 333 _ 233	54	54
$403 \ 313 \ -523 \ -433$	47	54
-533	36	47
223, 033	27	29
503, 413, -633	38	36
-613, -543 , -443 , -343	29	34
323, 133, -243	24	25
603, 513, 233, -743, -713	41	36
423, -833, -553, -453	36	31
-843, -823, -353, -653	25	19
703, 613, 333, 143, -253	32	32
-813, 523, -933, -853, -153, -943	35	31
433953763663563463. 243	26	24
803. 713. 053	28	25
-913, 623, -(10)33, -(10)43, -863, -363	32	33
903, 813, -(11)33, -(11)43, -(11)53.		
-163, -773, -673, -573	39	43

Table 4 Observed (F_o) and calculated (F_c) structure factors for form II

hkl	F _o	F _c
100	42	40
110	48	44
020	37	38
200	47	43
210, 130	114	119
220	66	56
140	60	55
300	17	18
240	58	60
320, 150	47	47
330	43	40
250, 060	25	25
160	36	42
400	35	36
410	27	28
420, 260	39	41
350	21	23
430, 170	38	41
440	30	28
360. 270	25	24
510, 450	26	26
370	40	38
530, 280	22	22
190	17	7
550, 470	25	27
600, 610	18	22
0(10)0	24	25
390	15	12
640, 2(10)0	26	27
570	19	23
650	19	19
490, 3(10)0, 1(11)0	20	25
700. 710	14	11
2(11)0. 720	13	11
670, 4(10)0	16	23
590. 3(11)0. 1(12)0	17	16
750, 2(12)0	20	15
800, 810, 5(10)0, 3(12)0, 820	19	21
011	29	27
-111	30	27
021	23	21
111	44	41
121	28	22

Table 4 (Continued)		
hki	F _o	Fc
031	49	48
-211	45 36	48
-221, 131	82	80
221, 041	33	36
-231, -141 141	53	47
-311, 231	56	55
-321, -241, 051	60	60
241, 151	15 19	26
321, -331	23	26
331 341 251 161	47	43
061	8	9
-411, 161	46	44
-421, 341 -261	21 10	22
411, -431, -351	28	27
421, 261, 071	22	16
431, -441 - 511 441 271	23	24 20
361, -451, 081	16	17
	27	26
511, -531, 451, -371 521, -281	21 14	26 22
-541, 281	30	34
461, 091	28	25
541, -551, -381, 191 -611, 381, -291	31 29	32
551, 471, 291	13	13
-481, -391, -1(10)1, 0(10)1, 611	20	20
- 641, 561, 1(10)1 631, 391	13	12
641	10	13
571, -491, 0(11)1	13	14
-721, -581, 491, 5(10)1, 1(11)1, -661 711, 581, 2(11)1	15	16
721, -741, -671, -4(10)1	13	13
-751, 4(10)1, -1(12)1, 0(12)1, -3(11)1	10	8 19
-811, 751, -761, -4(11)1, -5(10)1	16	18
761, -771, -691, 5(10)1, 3(12)1, -1(13)1,		
0(13)1, -831	18	17
-112 102 022	16 29	17
112, -122	64	68
-212, 122, 032	40	40
-222 202. 132	14	22
212	33	32
-302, 222	40	38
-312 -322, 232, -242	23 35	25 36
052, -152	72	75
302, 152	12	13
322, -252	27	32
-402, -342	18	17
-412,062	24	25
-422, 252 162	50 29	33
-432, -352, -262	13	13
342 402 412 072 172	21	19
402, 412, 072, -172 422, 352, -362, 172	36	36
-502, -512, -272	22	23
-522, -452	28	30
-372, 182	32 19	22
-462, -282, -542	17	18
502, 512, 452 522 372 282	27 18	31
532, -552, -382, -192, 092	18	19
-612, 462, -472, -602, 192	26	30
302, - 562	13	17

Table 4(Continued)

hkl	Fo	Fc
292	16	15
-642, 552, -482, -392, 0(10)2, -1(10)2, 472	19	16
602, 612, -572, 1(10)2, -2(10)2	21	19
-702, -712, 632, 482, 2(10)2, -492	16	16
-722, 642, -662, -582, -3(10)2,		
0(11)2, -1(11)2	25	23
-223, 123, -133, 033	17	22
-233, 133	39	43
-313, 213, -143, 043	34	33
-323, 223	31	30
-333, 233, -153, 053	47	48
-413, 313, -343, 243, -253, 153	28	22
323, -163, 063	21	21
333, -353, 253, -263, 163	32	35
-443, 343, 073, -173	22	20
413, -523, -273, 173, -513	33	31
-373, 273, -183, 083	26	23
443, -283, 183, -543, 363, -463	36	29
-623, 523, -473, 373, -383, 283, -193,		
093, 513, -613	33	31
-633, 533, -563, 463, -293, 193	23	19
543, -483, 383, -643	25	24
-573, -1(10)3, 0(10)3, 473, 553, -653, 473	16	13

RESULTS AND DISCUSSION

Form I

The molar ratio (EO:NaSCN) of form I is 3:1. The crystal structure of form I is shown in Figure 4. The structure is analogous to that of the PEO-NaI complex. The PEO chains have a twofold helical structure of $(-t_2gt_2gt_2\bar{g}-)_2$ conformation, where C-O bonds are trans (t) and C-C bonds are gauche (g) or $-gauche(\bar{g})$, and the chain repeat comprises six EO units. Bond lengths, bond angles and internal rotation angles are shown in Table 5. The SCN ions, which bend about 4°, are stacked horizontally along the chain axis. In Figure 4, the coordination geometry about a Na ion is shown by broken lines. Along the chain axis, Na and N are coordinated alternately. Each Na ion is coordinated by four polymer O atoms. The coordination number is therefore six. The coordination distances are listed in Table 6 (reported distances are 2.22–2.75 Å for Na \cdots O⁸, 2.826 Å for $Na \cdots S^8$, and 2.332 Å for $Na \cdots N^9$). Since all the Na \cdots S distances in form I are >4.17 Å, there is no coordination between $Na \cdots S$.

In spite of the similarity between the crystal structures of the PEO-NaI complex and of form I, the coordination number in the NaI complex is not six, but five (two I ions and three O atoms). Na···I distances in the NaI complex are 2.92 and 3.20 Å alternately (for comparison, Na···N distances in form I are 2.15 and 2.44 Å alternately). The chain repeat in the NaI complex (7.98 Å) is then 0.79 Å longer than that of form I in order to achieve both Na···I and Na···O coordinations. These features appear to bring about the difference in coordination number.

Form II

The molar ratio of form II was determined by the present X-ray study as 1:1. The crystal structure of form II is shown in *Figure 5*. The PEO chains have a glide structure of

Table 5	Bond	lengths,	bond	angles	and	internal	rotation	angles	in
form I				-				-	

	Bond length (Å)
01-C1	1.45
C1–C2	1.57
C2-O2	1.47
O2–C3	1.44
C3-C4	1.51
C4-O3	1.40
O3-C5	1.43
C5–C6	1.53
C6-O1'	1.45
S-C	1.51
C-N	1.31
	Bond angle (deg)
C6'-O1-C1	112
O1–C1–C2	112
C1C2O2	115
C2O2C3	113
O2-C3-C4	113
C3-C4-O3	100
C4-O3-C5	112
O3-C5-C6	106
C5-C6-O1′	109
S-C-N	176
	Internal rotation angle (deg)
C6'-O1-C1-C2	177
O1-C1-C2-O2	-52
C1–C2–O2–C3	174
C2-O2-C3-C4	171
O2-C3-C4-O3	64
C3-C4-O3-C5	-170
C4-O3-C5-C6	175
O3-C5-C6-O1'	56
C5-C6-O1'-C1'	178

Table 6 Coordination distances in form I

Coordination distance (Å)		
$Na \cdots O(1)^{\alpha}$	2.52	
$Na \cdots O(2)$	2.58	
$Na \cdots O(3)$	2.53	
$Na \cdots O(4)$	2.65	
$Na \cdots N(5)$	2.41	
$\mathbf{Na}\cdots\mathbf{N}(\mathbf{\hat{6}})$	2.15	

" Numbers in brackets are explained in Figure 4

Table 7Bond lengths, bond angles and internal rotation angles in
form II

	Bond length (Å)
0C1	1.40
C1C2	1.52
C2O'	1.41
S-C	1.61
C-N	1.28
	Bond angle (deg)
OC1C2	107
C1-C2-O'	102
C2'-O-C1	118
S-C-N	174
	Internal rotation angle (deg)
C2′-O-C1-C2	-77
O-C1-C2-O'	-88
C1C2O'C1'	159

Figure 4 Crystal structure of PEO-NaSCN complex form I: (a) c projection and (b) -b projection

conformation, the chain repeat comprising two EO units. Bond lengths, bond angles and internal rotation angles in form II are listed in *Table 7*. The coordination number in form II is again six. However, differing from form I, in which the SCN ion is coordinated to Na via the N atom, the S of the SCN ion also participates in coordination in form II, as shown by broken lines in *Figure 5*. Each Na ion is coordinated by two polymer O atoms and two N and two S of the SCN ions. The coordination distances are listed in *Table 8*. Table 8 Coordination distances in form II

Coordination distance (Å)		
$Na \cdots O(1)^a$	2.58	
$Na \cdots O(2)$	2.44	
$Na \cdots N(3)$	2.37	
$Na \cdots N(4)$	2.39	
$Na \cdots S(5)$	2.98	
$Na \cdots S(6)$	2.86	

^a Numbers in brackets are explained in Figure 5

Figure 5 Crystal structure of PEO-NaSCN complex form II: (a) c projection and (b) b projection

In the PEO-NaI complex and form I, the helical polymer chain coils round the cations, but this is not the case in form II. The interval of EO units along the chain axis in form II (5.83/2=2.92 Å) is considerably longer than the average interval in form I (7.19/6 = 1.20 Å). Accordingly, the rather extended PEO chain in form II is unable to wrap Na ions. Since the $(-tg_2t\bar{g}_2-)$ conformation itself must be energetically unstable, it is readily understandable that form II exists only under high tension (for comparison, for PEO, the fully extended zigzag form¹⁰ exists only under high tension). In practice, form II is transformed into form I when the tension is released. On this transformation, the molar ratio of 1:1 in form II changes to 3:1 in form I. However, no appreciable free NaSCN crystals were detected by X-rays after completion of the transformation. Probably the excess NaSCN dissolves in amorphous parts or is spent to develop form I crystallites with PEO in amorphous parts. Although the structure of form III is not known,

dependence of the electric conductivity on polymorphism may be of interest.

REFERENCES

- 1 Fenton, D. E., Paker, J. M. and Wright, P. V. Polymer 1973, 14. 589
- 2 Wright, P. V. Br. Polym. J. 1975, 7, 319
- 3
- Wright, P. V. J. Polym. Sci., Polym. Phys. Edn. 1976, 14, 955 Armand, M. B., Chanagno, J. M. and Doclot, M. J. 'Fast Ion 4 Transport in Solids' (Eds P. Vashisha, J. N. Mundey and G. K. Shenoy), North-Holland, New York, 1979
- 5 Chatani, Y. and Okamura, S. Polymer 1987, 28, 1815
- 6 Hibma, T. Sol. St. Ionics 1983, 9/10, 1101
- 7 Yokoyama, M., Ishihara, H., Iwamoto, R. and Tadokoro, H. Macromolecules 1969, 2, 184
- 8 'International Tables for X-Ray Crystallography' (Eds C. H. MacGillavry and G. D. Rieck), Reidel, Dordrecht, 1983, Vol. III, p. 258
- 9 Suh, I.-H., Weber, G. and Saenger, W. Acta Crystallogr. 1978, **B34**, 2752
- 10 Takahashi, Y., Sumita, I. and Tadokoro, H. J. Polym. Sci., Polym. Phys. Edn. 1983, 11, 2113